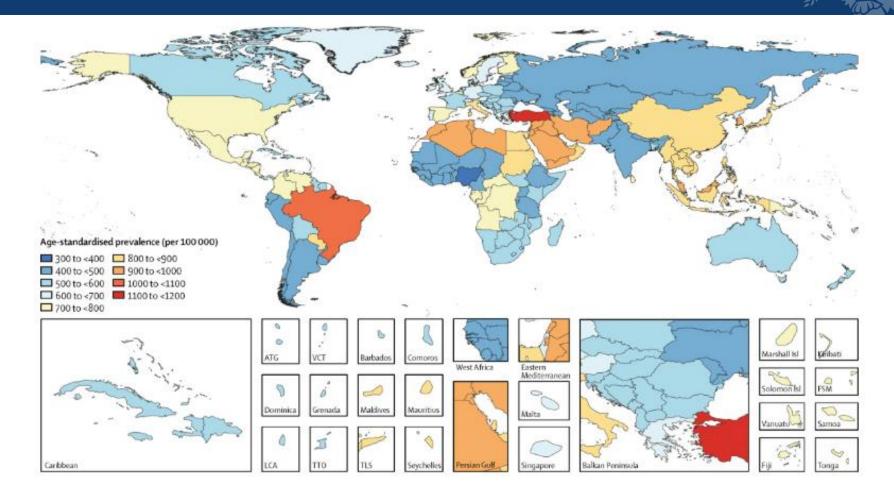


Future Clinical Uses of OCT for Neurodegenerative Diseases

Bang V Bui

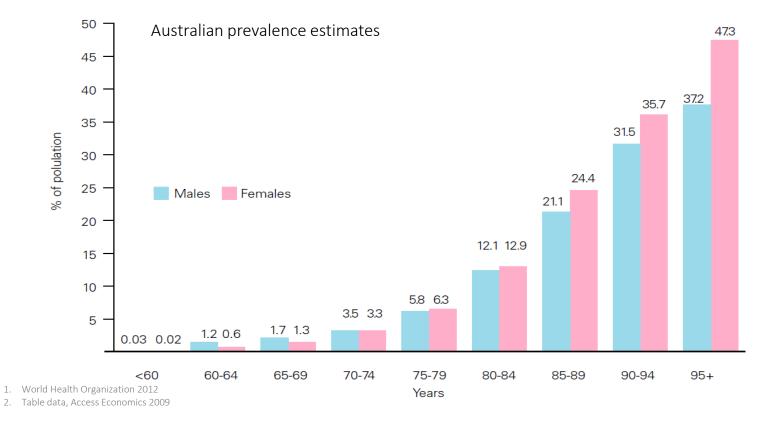
The University of Melbourne, Parkville, VIC, Australia

Financial disclosure: N/A


Outline

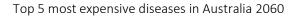
- Dementia
- How the eye might be involved?
- What OCT changes are expected?
- Where things are headed?

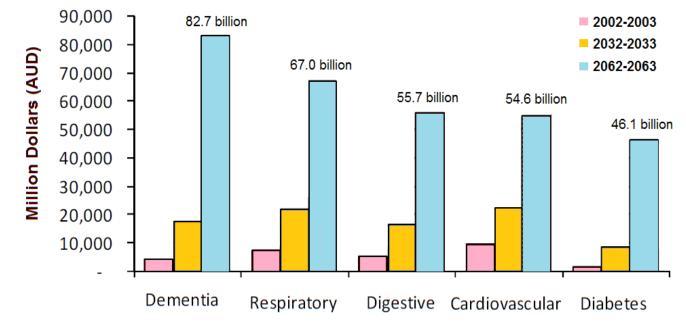
Dementia


- growth in life expectancy increased prevalence of chronic diseases, such as Alzheimer's disease (AD)
- 50 million people in the world living with dementia, 10 mill new each year
- major causes of disability and loss of independence
 - second largest contributor to total number of years living with disability (YLD)
- wide physical, psychological, social, and economic impact on individual, families, carers and health care system

Alzheimer's disease is the most common form of dementia (60-70% of cases)

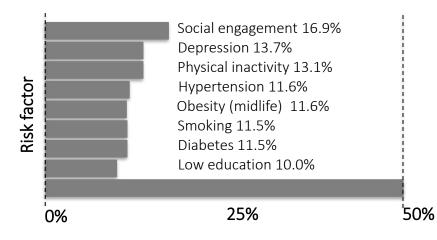
Alzheimer's disease


• Affects about 1 in 5 at age 85¹



Alzheimer's disease

huge economic impact



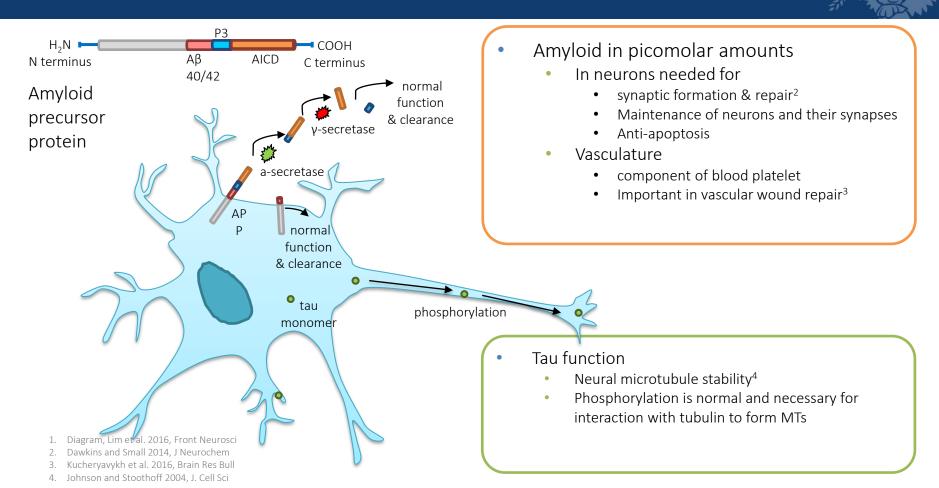
1. World Health Organization 2012

2. Table data, Access Economics 2009

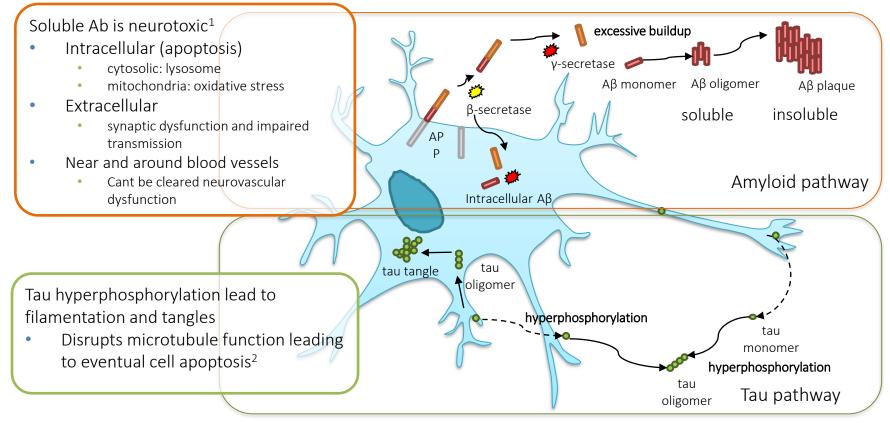
Multifactorial risk factors

Genetic factors Amyloid precursor protein Apolipoprotein E – e4 Age

Metabolic factors


Diabetes Vit D B12 deficiency Hypertension Folate deficiency obesity

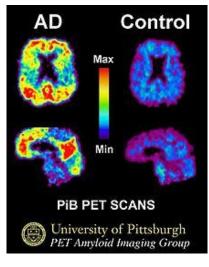
Lifestyle Smoking Low education Depression Sedentary lifestyle Lack of social engagement Psychological stress Mental inactivity

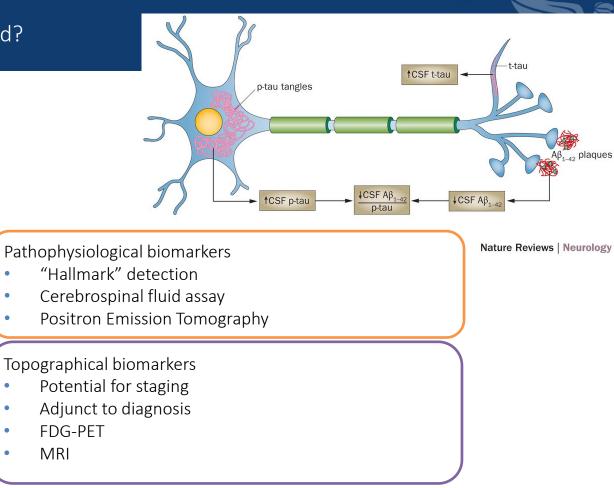

Miscellaneous

Head injury Aluminum toxicity

Amyloid Precursor Protein and Tau in health

Amyloid Hypothesis in Alzheimer's disease




- 1. Mucke and Selkoe 2012, Cold Spring Harb Perspect Med
- 2. Wang et al. 2013, J Alz Dis

Courtesy of Jeremiah Lim

How is dementia diagnosed?

De Deyn 2015, Nature Reviews Neurology

2. Image, William Klunk 2008, https://commons.wikimedia.org/wiki/File:PiB_PET_Images_AD.jpg

•

•

•

•

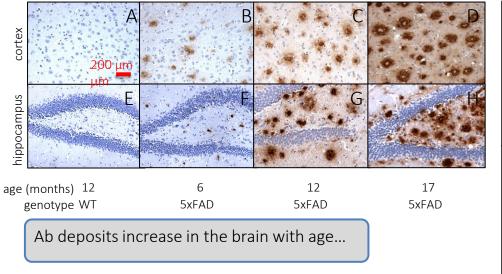
•

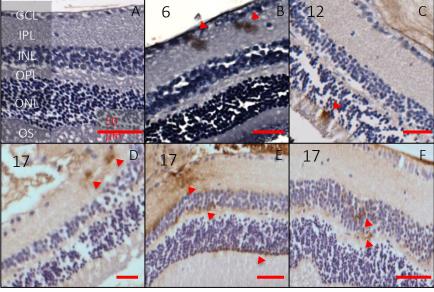
Alzheimer's Disease stages and diagnosis

- Stages
 - Preclinical, Mild Cognitive Impairment, Clinical¹
- Average survival of 4.6 years from clinical diagnosis²
- Current treatments do not slow, stop or reverse the process
- Current hallmark biomarkers
 - Expensive and invasive

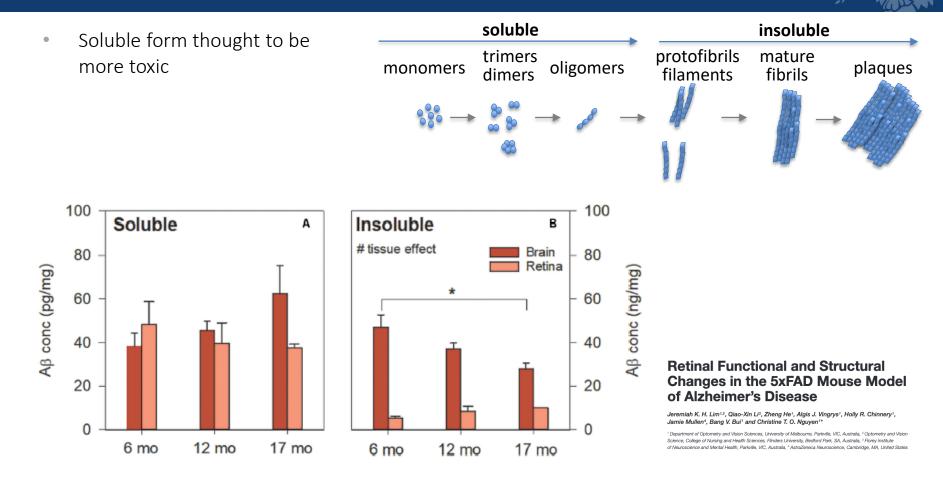
2. WHO 2012, Table 2.1

Amyloid accumulations are in brains and eyes of mouse AD models

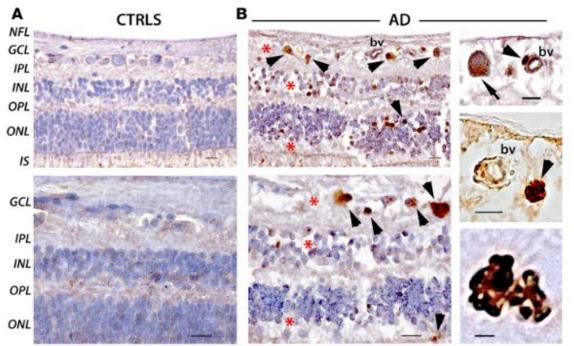



ORIGINAL RESEARCH published: 13 August 2020 doi: 10.3389/fnins.2020.00862

Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease


Jeremiah K. H. Lim^{1,2}, Qiao-Xin Li³, Zheng He¹, Algis J. Vingrys¹, Holly R. Chinnery¹, Jamie Mullen⁴, Bang V. Bui¹ and Christine T. O. Nguyen^{1*}

¹ Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia, ² Optometry and Vision Science, College of Nursing and Health Sciences, Finders University, Bedford Park, SA, Australia, ² Fiorey Institute of Neuroscience and Mental Health, Parkville, VV, Sustralia, ⁴ Astraphence Neuroscience, Camhridge, MA, United States Ab deposits appear in the inner retina at all ages and in the outer retina at later stages > 12 months



Both soluble and insoluble amyloid is found in the retina

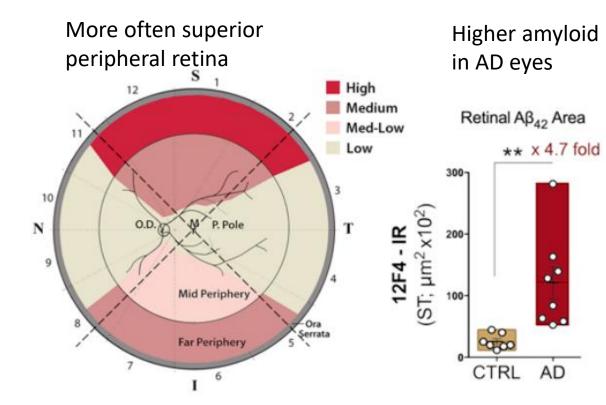
Amyloid accumulations are in human retinae

- In cells and blood vessels
- Particularly ganglion cells

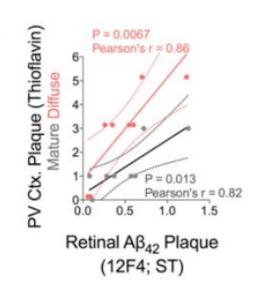
JCI insight

Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease

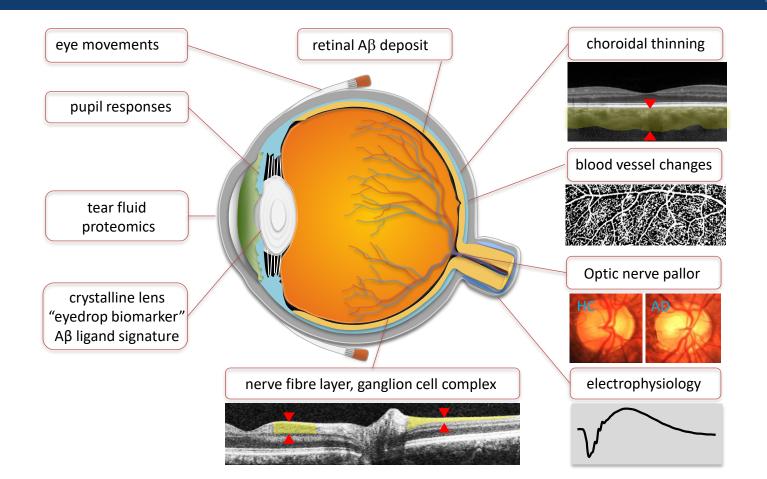
Vosef Koronyo,' David Biggs,' Ernesto Barron,' David S. Boyer,' Joel A. Pearlman,' William J. Au,' Shawn J. Klle,' Austin Blanco,' Dleu-Trang Fuchs,' Adeel Ashfaq,' Sally Frautschy,' Gregory M. Cole,' Carol A. Miller,' David R. Hinton,'® Steven R. Verdooner,' Keith L. Black,' and Maya Koronyo-Hamaoul'¹¹


CLINICAL MEDICINE

12F4-DAB + Hematoxylin


Amyloid accumulations in human retinae

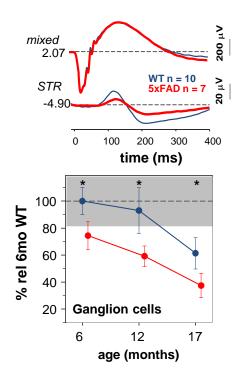
Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease


Yosef Koronyo,' David Biggs,' Ernesto Barron,' David S. Boyer,4 Joel A. Pearlman,⁵ William J. Au,⁶ Shawn J. Klle,⁶ Austin Blanco,² Dieu-Trang Fuchs,' Adeel Ashfaq,' Sally Frautschy,⁸ Gregory M. Cole,⁹ Carol A. Miller,⁹ David R. Hinton,¹⁰ Steven R. Verdooner,² Keith L. Black,¹ and Maya Koronyo-Hamaoul¹¹¹

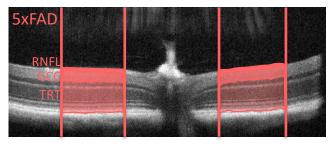
Retina amyloid related to brain amyloid levels

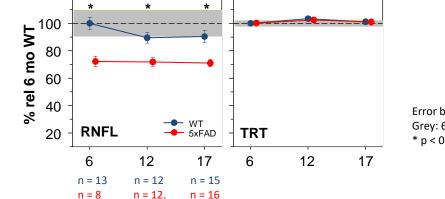
How might this manifest in the eye?

Structural and functional manifestations of AD in the visual system


Increasingly long list of differences: but which are specific to AD?

Pupil	Atypical pupil response to cholinergic antagonists	
	Smaller maximum pupillary light reflex	
	Increased pupillary size	
Lens	$A\beta$ in lens and aqueous humor	
	Predisposition to supranuclear cataract	
Retina	Decreased retinal blood flow, RNFL thinning	
	RGC degeneration	
	Overall reduction in RGC axon numbers	
	A β deposition in retina	
Choroid	Reduced choroidal thickness	
Optic nerve	Increased cup: disk ratio and pallor	


Visual acuity	Decreased visual acuity in low luminance
Contrast sensitivity	Reduced low frequencies contrast sensitivity
	Reduced reading speed at lower contrast
Color vision	Poor color discrimination
	Deficiencies most significant in tritan axis
Visual field loss	Inferior hemifield loss
Motion perception	Higher thresholds for motion detection
Depth perception and stereopsis	Reduced stereopsis, mean threshold >150 s of arc
Ocular motor function	Abnormal hypometric saccades


In animals with retinal amyloid deposits

Ganglion cell responses are lost early

Retinal nerve fibre layer thins the most

Error bars: Avg ± SEM Grey: 6mo 95% Cl * p < 0.05

RNFL findings in Alzheimer's disease

- More thinning in the superior
 - N=9 MMSE 24 (out of 30)
- Those with MCI also had thinning compared with controls
- Most studies consistently find RNFL thinning compared to age-matched controls
- More studies find superior and inferior thinning
 - less nasal and temporal change

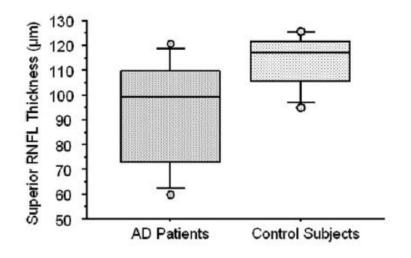
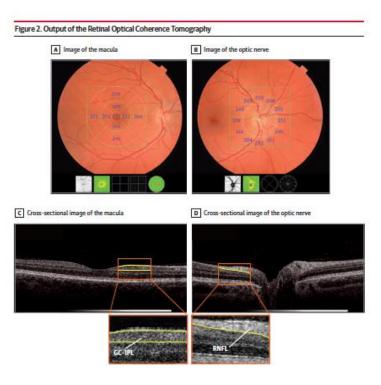


 TABLE 3. Peripapillary RNFL Thickness Values in Patients with AD and Control Subjects

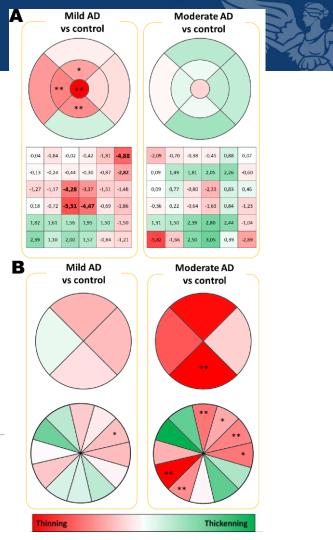
	$\begin{array}{l} \text{AD} \\ (n = 9) \end{array}$	$\begin{array}{l} \text{Control} \\ (n = 8) \end{array}$	Р
Superior RNFL thickness (µm)	92.2 ± 21.6	113.6 ± 10.8	0.02*
Inferior RNFL thickness (µm)	117.0 ± 15.3	128.1 ± 11.4	0.11
Temporal RNFL thickness (µm)	67.0 ± 15.0	69.5 ± 11.1	0.70
Nasal RNFL thickness (µm)	65.7 ± 15.1	64.1 ± 7.3	0.80


Data are presented as mean \pm SD. * P < 0.05.

The biggest study to date

- Rotterdam Study, patients <u>followed</u> for 5 years... 2007 to 2015
 - N=3289
- Minimental state exam (MMSE)
 - score of 26 or more
- those with dementia (prevalent) had thinner GCL-IPL
- those with thinner RNFL higher risk of developing dementia
 - Independent of cardiovascular disease
- Peripapillary RNFl thinning earlier
- Clear GCL-IPL thinning more severe disease...

JAMA Neurology | Original Investigation Association of Retinal Neurodegeneration on Optical Coherence Tomography With Dementia A Population-Based Study


Unal Mutlu, MD, PhD; Johanna M. Colijn, MD; M. Arfan Ikram, MD, PhD; Pieter W. M. Bonnemaijer, MD; Silvan Licher, MD; Frank J. Wolters, MD; Henning Tiemeier, MD, PhD; Peter J. Koudstaal, MD, PhD; Caroline C. W. Klaver, MD, PhD; M. Kamran Ikram, MD, PhD

Macula thinning in Alzheimer's disease

- More variability in outcomes of studies assessing macular thinning
 - 13 out of 20 studies showed macular thinning
- Macular thinner in mild AD, but **thicker** in moderate AD
- Peripapillary RNFL show more thinning between mild and moderate AD

OPLOS ONE

RESEARCH ARTICLE

Changes in visual function and retinal structure in the progression of Alzheimer's disease

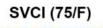
Elena Salobrar-Garcíao^{1,2}*, Rosa de Hoz^{1,3}*, Ana I. Ramírsz^{1,3}, Inés López-Cuenca^{1,2}, Pilar Rojaso^{1,4}, Ravi Vazirani¹, Carla Amaranteo¹, Raquel Yubero⁵, Pedro Gil⁵, María D. Pinazo-Duráno^{6,7}, Juan J. Salazaro^{-1,2}*, José M. Ramírsz^{1,2}*

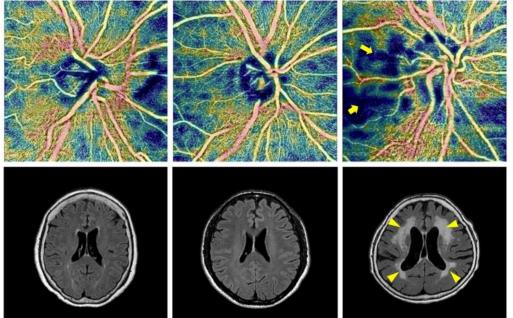
OCTa difference in AD are inconsistent

- Some studies find reduced macular vessel density, larger foveal avascular zone area
 - others do not
- Peripapillary capillary density is reduced in moderate AD
 - Less nerves need fewer vessels?
- And strongly associated with the presence of Subcortical vascular cognitive impairment
 - Generalized vascular problem?

Lee et al. Alzheimer's Research & Therapy (2020) 12:73 https://doi.org/10.1186/s13195-020-00638-x Alzheimer's Research & Therapy

Open Access


RESEARCH


Optical coherence tomography angiography as a potential screening tool for cerebral small vessel diseases

Ju-Yeun Lee^{1†}, Jun Pyo Kim^{23,4†}, Hyemin Jang^{23,4}, Jaeho Kim^{23,4}, Sung Hoon Kang^{23,4}, Ji Sun Kim^{23,4}, Jongmin Lee^{23,4}, Young Hee Jung²⁵, Duk L. Na^{23,4,6}, Sang Won Seo^{23,4,6,78}, Sei Yeul Oh^{9*} and Hee Jin Kim^{23,4,6,8*}

CN (63/M)

ADCI (63/M)

OCTa pre-clinical AD

OPEN ACCESS

- Studies in Mild cognitive impairment and AD lean toward lower vessel density

Clinical science

- In cognitively normal subjects (MMSE 29-30)
 - those with Ab load (PET imaging) had higher vessel density, FAZ was the same
 - Is this a sign of early inflammation?
 - Soluble amyloid...

Table 2Difference in vessel densities and foveal avascular zonearea between amyloid-positive and amyloid-negative participants

ABL VORCUE AB-

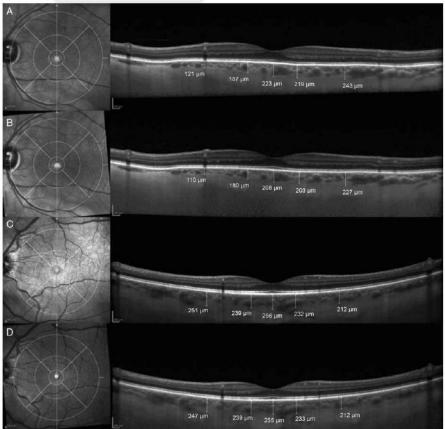
	Ap+ versus Ap-				
	Difference	Raw p value	95% CI	Adjusted p value	
Retinal vessel density					
Inner ring macula	0.81	< 0.001	0.36 to 1.26	0.002	
Outer ring macula	0.50	0.012	0.11 to 0.90	0.024	
Around optic nerve head	0.83	0.005	0.25 to 1.42	0.015	
Foveal avascular zone (mm ²)	-0.02	0.387	-0.05 to 0.02	0.387	

Optical coherence tomography angiography in preclinical Alzheimer's disease

Jacoba Alida van de Kreeke [©], ¹ Hoang-Ton Nguyen, ¹ Elles Konijnenberg, ² Jori Tomassen, ² Anouk den Braber, ^{2,3} Mara ten Kate, ² Maqsood Yaqub, ⁴ Bart van Berckel, ⁴ Adriaan A Lammertsma, ⁴ Dorret I Boomsma, ³ Stevie H Tan, ¹ Frank Verbraak, ¹ Pieter Jelle Visser²

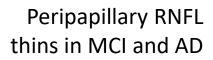
Choroidal thickness in AD

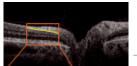
TABLE 3. Alzheimer Disease Patients Versus Controls: Changes in Best-corrected Visual Acuity and Psychometric Scores

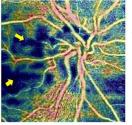

	AD Patients			Controls		
	ТО	T12	Р	TO	T12	Р
BCVA (no. ETDRS letters)	54 ± 3.8	53 ± 3.5	0.01*	57 ± 4.1	57 ± 4.2	0.7*
BCVA change	-1.3 ± 2.3		0.4 ± 2.1			
MMSE	22.5 ± 2.1	16.8 ± 2.8	< 0.0001‡	28.6 ± 1.4	28.3 ± 1.2	0.5‡

- Progression in MMSE over the course of 12 months associated with a reduction in choroidal thickness
- In mild-moderate AD
 - Why is not well understood

ORIGINAL ARTICLE


Attenuation of Choroidal Thickness in Patients With Alzheimer Disease Evidence From an Italian Prospective Study


Alessandro Trebbastoni, MD, PhD,* Michela Marcelli, MD,† Fabiana Mallone, MD,† Fabrizia D'Antonio, MD,* Letizia Imbriano, BSc,* Alessandra Campanelli, MD,* Carlo de Lena, MD,* and Magda Gharbiya, MD†



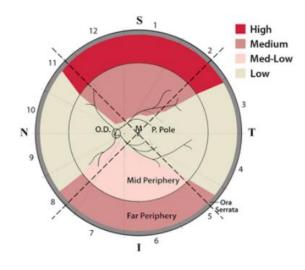
Early detection of AD using OCT

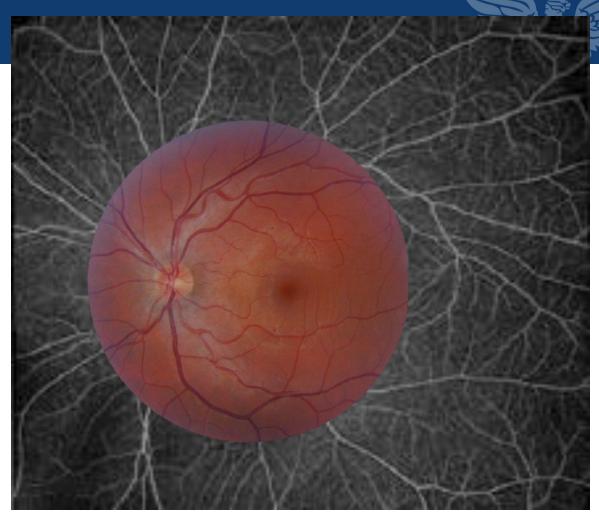
• Early detection... pRNFL thinning, mGC-IPL thickening with increase vessel density



Peripapillary Vessel density more strongly associated with vascular dementia mGC-IPL thins early but thickens later

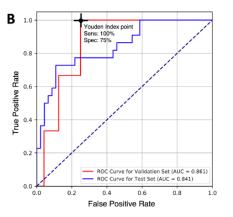
Choroid thins with AD progression



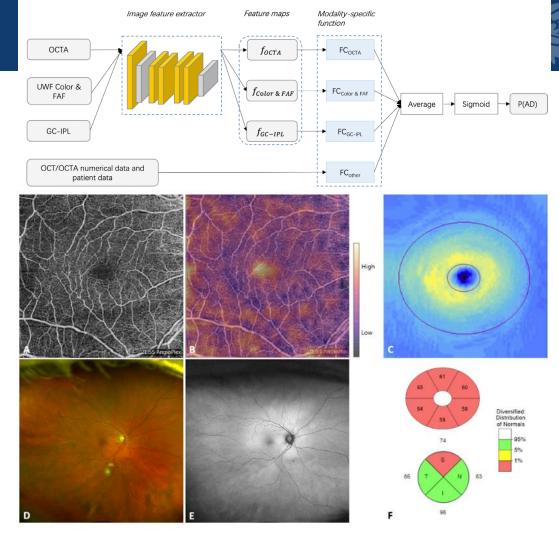


Macular Vessel density higher density in preclinical lower in MCI and AD

A more complete picture


- Widefield mapping
 - OCT and OCTa montages

A more complete picture


- Machine learning assisted
 - Combine OCT with other biomarkers, other imaging modalities

Clinical science

Convolutional neural network to identify symptomatic Alzheimer's disease using multimodal retinal imaging

C. Ellis Wisely $\bigcirc, 1$ Dong Wang, 2 Ricardo Henao $\bigcirc, ^3$ Dilraj S. Grewal $\bigcirc, 1$ Atalie C. Thompson, 1 Cason B. Robbins $\bigcirc, ^1$ Stephen P. Yoon, 1 Srinath Soundararajan, 1 Bryce W. Polascik, 1 James R. Burke, 4 Andy Liu, 4 Lawrence Carin, 2 Sharon Fekrat $\bigcirc, ^1$

Other approaches: contrast agent

AD

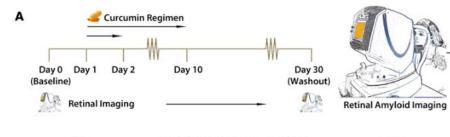
ST

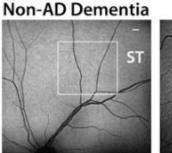
JCI insight

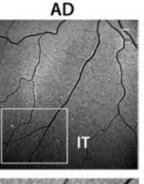
CLINICAL MEDICINE

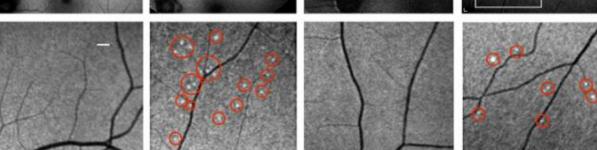
в

С

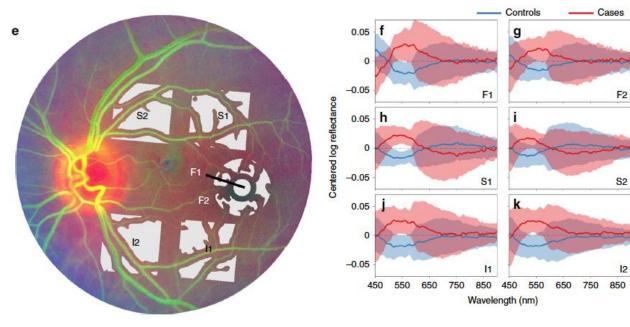

Normal

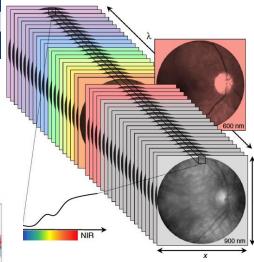

4


Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease


Yosef Koronyo,' David Biggs,' Ernesto Barron,' David S. Boyer,' Joel A. Pearlman,' William J. Au,⁶ Shawn, Kile,⁴ Austin Blanco,' Dieu-Trang Fuchs,' Adeel Ashfaq,' Sally Frautschy,⁴ Gregory M. Cole,⁴ Carol A. Miller,⁹ David R. Hinton,¹⁰ Steven R. Verdooner,² Keith L. Black,¹ and Maya Koronyo-Hamaoui¹⁰¹

 Oral curcumin as a contrast agent



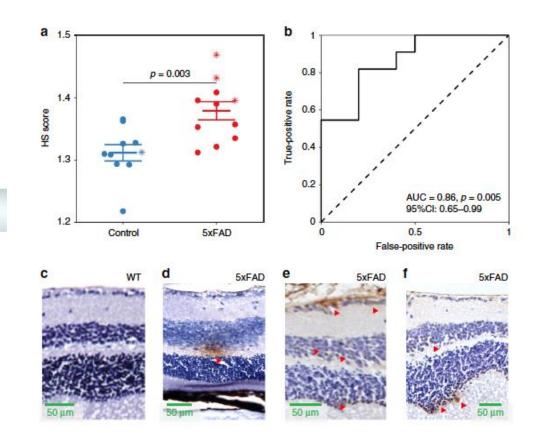


Other approaches: amyloid accumulating changes ref

Hyperspectral imaging

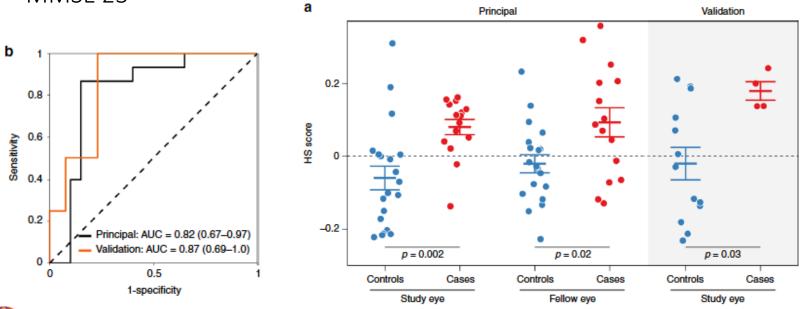
Hyperspectral imaging in a mouse model of AD

 Identifies difference between control and mice with amyloid accumulation



ARTICLE https://doi.org/10.1038/s41467-019-12242-1 OPEN

Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer's disease


Xavier Hadoux to et al.#

Hyperspectral imaging in human AD

- PET positive
- MMSE 23

Summary

- Retina manifests both soluble and insoluble amyloid beta and tau
- This produces a range of structural and functional deficit

• A growing number of studies, albeit with small sample sizes are identifying distinct retinal changes in specific locations that differentiate Alzheimer's disease risk from other conditions

• Utility of advanced OCT and OCTa imaging places eyecare and optometry in a position to help fight the growing AD epidemic

Acknowledgements

- Support
 - NHMRC 1046203, ARC Future Fellowship 130100388
 - National Institutes of Health NEI RO1EY019939
 - Bayer GOAP, SPARK

CENTRE FOR

Eye Research Australia

National Eye Institute Research Today...Vision Tomorrow

